Красота глаз Очки Россия

Глаз строение и функции. Зрительная сенсорная система

строение и функции глаза

Зрение - великий дар. Не зря говорят: «беречь как зеницу ока». Посредством зрения человек получает до 95% информации об окружающем мире. Наше зрение является бинокулярным (два газа) и стереоскопичным (мы видим предметы в трёхмерном изображении), что обусловлено строением глаз . Глаза располагаются в глазных впадинах, образованных костями черепа, в окружении шести мышц: четырех прямых и двух косых глазных мышц. Мышцы способствуют движению глаз в разных направлениях. Само глазное яблоко находится в окружении органов, которые защищают его от вредных воздействий внешней среды. препятствуют попаданию в глаза пота и других жидкостей, стекающих со лба. Веки и ресницы защищают глаза от пыли и световых лучей. Слёзные железы , расположенные у наружного угла глаз, выделяют слезы, которые увлажняют, очищают, дезинфицируют поверхность глазного яблока. Глазное яблоко имеет форму шара, у взрослого человека его диаметр равен примерно 24 мм. Структуру глазного яблока составляют: Оболочки: · склера - непрозрачная внешняя оболочка глазного яблока, к которой крепятся 6 глазодвигательных мышц. Функция оболочки – защитная. · сосудистая – средняя оболочка, выстилающая задний отдел склеры и пронизанная кровеносными сосудами. Функция оболочки – питание глаза. · сетчатка – внутренняя оболочка, состоящая из фоторецепторов (палочки и колбочки) и нервных клеток. Фоторецепторы вырабатывают фермент родопсин, преобразующий энергию света в электрическую энергию нервной ткани. Функция оболочки – восприятие света. · роговица - прозрачная оболочка, покрывающая переднюю часть глаза и имеющая большую преломляющую силу. Функция – преломление лучей света. · конъюнктива - тонкая прозрачная оболочка, покрывающая глаз снаружи. Она начинается с лимба, наружного края роговицы, покрывает видимую часть склеры, а также внутреннюю поверхность век. В толще конъюнктивы находятся сосуды, которые обеспечивают её питание. Функция - секреция слизистой и жидкой части слезной жидкости. · радужка - тонкая подвижная оболочка глаза с отверстием для зрачка в центре, которая регулирует поступление света на сетчатку. Радужная оболочка содержит пигментные клетки, которые определяют цвет глаза. Пространство между роговицей и радужкой (передняя камера глаза) заполнено внутриглазной жидкостью , которая вырабатывается отростками ресничного тела. Функция внутриглазной жидкости - поддержание внутриглазного давления и питание хрусталика и роговицы, которые не имеют сосудов. Ещё одним структурным элементом глаза является зрачок - отверстие в центре радужки, которое позволяет лучам света проникать внутрь глаза для их восприятия сетчаткой. Размер зрачка может меняться при сокращении мышечных волокон в радужке; таким образом, глаз контролирует степень освещенности сетчатки. Непосредственно за радужкой находится хрусталик, который является второй (после роговицы) по оптической силе линзой глаза, меняющей свою преломляющую способность в зависимости от степени удаленности рассматриваемого предмета от глаз. Функция хрусталика - динамичная фокусировка изображения на сетчатку. Всю внутреннюю часть глазного яблока заполняет стекловидное тело - гелеобразная прозрачная субстанция, которая поддерживает форму глазного яблока и участвует во внутриглазном обмене веществ. Основная функция - поддержание сетчатки в нормальном положении. Связующим звеном между глазом и центральной нервной системой служит зрительный нерв . Он передает информацию, поступившую в световых лучах и воспринятую сетчаткой, в виде электрических импульсов в головной мозг. Зрительный нерв располагается недалеко от макулы (центральная часть сетчатки, которая располагается к виску от диска зрительного нерва). Взгляд находится в постоянном движении благодаря мелким быстрым (50-150 движений в секунду) скачкообразным колебаниям, которые называются саккадами . Саккады возбуждают нервные клетки сетчатки, на которой составляется единое изображение. Таким образом, наши глаза являются сложной оптической системой , которая воспринимает и "кодирует" полученную информацию для головного мозга.

Vision.web-3.ru

Глаза - орган зрения человека. Именно благодаря им мы получаем большую часть информации об окружающем мире. Глаза расположены в костных впадинах черепа, и каждое глазное яблоко приводится в движение глазодвигательными мышцами, прикрепленными к его наружной оболочке. Внутри глазного яблока расположены хрусталик и стекловидное тело.

Глаз имеет три оболочки.

Наружная оболочка, называемая склерой, является плотным белым волокнистым образованием, окружающим глаз сзади и с боков. Передняя часть склеры - роговица - представлена прозрачной тканью, слегка выпячивающейся перед радужной оболочкой и зрачком.

Средняя оболочка глаза, называемая сосудистой оболочкой глазного яблока, определяет цвет глаз. Она состоит из собственно сосудистой оболочки - плотной утолщенной ткани, пронизанной питающими сетчатку кровеносными сосудами, - по задней стенке глаза, радужной оболочки, или радужки, и ресничного тела на передней части глаза.

Радужная оболочка - цветной крут в середине глаза - состоит из мышечных волокон, которые сокращаются и расслабляются, изменяя размер зрачка - отверстия в центре радужной оболочки. Зрачок контролирует количество света, проникающего в глаз. Ресничное тело образовано мышечными волокнами, которые производят жидкость, поддерживающую давление в передней части глаза, и изменяют форму хрусталика для того, чтобы фокусировать лучи света на сетчатку. Внутренняя выстилка задней стенки глаза называется сетчаткой; в ней находятся нервные окончания и фоторецепторы, которые принимают проникающий в глаз свет. Свет проходит через роговицу, глазную жидкость, зрачок и хрусталик. При этом световые лучи преломляются так, что форсируются на заднюю стенку глаза вдоль сетчатки, раздражая фоторецепторы. Рецепторы, в свою очередь, посылают импульсы зрительному нерву, который проходит сквозь заднюю стенку глаза. Зрительный нерв передает импульсы в заднюю часть головного мозга, который воспринимает их в виде зрительного образа. Объемное восприятие есть результат сложения мозгом импульсов от обоих глаз.

Nexvorat.ru

Все, наверное, помнят книгу известного английского писателя Джонатана Свифта Гулливер в стране Великанов. В ней виртуозно описывается строение организма гигантов, и Гулливеру этот организм видится невообразимо большим. Представим себе, что Гулливер рассматривает строение огромного глаза великана. Перед ним шарообразная конструкция внушительных размеров, напоминающая сооружение современного архитектора-абстракциониста это глазное яблоко, соединенное зрительным нервом с головным мозгом.

Функции глаза.

Функции глаза

Природа недаром создала глаз шарообразным, благодаря своей форме глаз может вращаться вокруг трех осей: горизонтальной, вертикальной и собственной оптической оси. Три пары глазодвигательных мышц, расположенных вокруг глаза, управляют его вращением.

Учеными установлено, что глазодвигательные мышцы одни из самых быстродействующих. Неудивительно поэтому, что глаз это самый подвижный из всех органов человеческого организма. Глаз совершает непрерывные движения, даже в состоянии кажущегося покоя. Так называемые микродвижения глаз играют очень важную функцию в зрительном восприятии. Без этих мелких движений люди не могли бы различать предметы. Рассматривая, к примеру, живописное полотно художника, глазное яблоко перемещается скачкообразно, совершая до 130 скачков в минуту. Трудно даже представить, что длительность одного скачка составляет всего несколько сотых долей секунды.

Строение глаза

От внешних воздействий глазное яблоко защищают костные стенки глазницы и веки. Глазное яблоко состоит из роговицы, склеры, сосудистой оболочки, сетчатки, хрусталика, стекловидного тела и водянистой влаги. Роговица и склера относятся к наружной оболочке глазного яблока, которая представляет собой непрозрачную ткань белого цвета. Склера самая прочная оболочка глазного яблока. В склере великана Гулливер обнаружил отверстие, похожее на окошко. Это роговица. Роговица действует как оптическая линза, пропуская и преломляя лучи света. ЕЕ функция проста - предотвращать попадание в глаз пыли, микробов и прочих инородных тел.

Строение глаза человека в картинках

Паутина сосудиков, просвечивающая через мутноватую оболочку глазного яблока сосудистая оболочка глаза, расположенная под склерой. Она снабжена большим количеством кровеносных сосудов, которые обеспечивают питание тканей глаза. Сосудистая оболочка глазного яблока переходит в радужную оболочку, или радужку. Если посмотреть на радужную оболочку через увеличительное стекло, то прежде всего поразит ее сходство с космическим пространством.

Как известно, радужная оболочка может иметь различную окраску.

Цвет глаза (радужной оболочки) зависит от количества пигмента. Теперь становится понятным, от чего зависит цвет глаз : когда пигмента много глаза темно- или светло-карие, а когда мало голубые, зеленоватые или серые. Однако в природе бывают и альбиносы - это весьма распространенное явление. В радужной оболочке альбиносов не содержится пигмента, поэтому их глаза имеют красный цвет.

Наконец мы добрались до зрачка центра вселенной глаза. Зрачок находится в центре радужной оболочки и регулирует количество лучей света, поступающих внутрь глаза. Наверное, многие наблюдали, что при ярком освещении зрачок становится узким. Таким образом он ограничивает поток света, а при недостаточной освещенности зрачок расширяется, пропуская большее количество световых лучей.

Вы конечно же замечали, что, попадая из помещения с ярким светом в полутемное, сначала мы ничего не видим, но затем чувствительность глаза постепенно повышается и очертания окружающих предметов становятся все более и более отчетливыми. Если же мы попадаем из темной комнаты в ярко освещенную, то в первый момент не в состоянии прочитать и двух строк из любимой книги: белая бумага кажется слишком яркой и буквально слепит глаза. Однако через одну-две минуты чувствительность глаза к свету снижается и мы можем спокойно приступить к чтению. Таким образом, наши глаза приспосабливаются к различной яркости. Эта функция глаза называется адаптацией.

Строение глаза в картинках

Радужка отделяется от сосудистой оболочки глаза ресничным телом. На тонких ресничных мышцах подвешена двояковыпуклая линза, похожая на дыню. Это хрусталик. Диаметр хрусталика человека составляет 10 мм. При расслаблении и сокращении ресничной мышцы хрусталик меняет свою форму кривизну поверхностей. Благодари такой функции хрусталика мы можем четко видеть предметы как на близком, так и на далеком расстоянии. При взгляде вдаль хрусталик становится более плоским, а при чтении или работе на близком расстоянии выпуклым. Свойство глаз приспосабливаться к рассмотрению предметов, находящихся на разном расстоянии от него, называется аккомодацией. Она осуществляется за счет ресничной мышцы. У хрусталика нет ни сосудов, ни нервов, его питание обеспечивается специальной жидкостью, которую выделяет ресничное тело.

Хрусталик детей и молодых людей до 25-35 лет эластичен и представляет собой прозрачную массу полужидкой консистенции, заключенную в капсулу. С возрастом хрусталик плотнеет. Внутренняя полость глаза заполнена прозрачной желеобразной массой стекловидным телом. При помутнении стекловидного тела зрение ухудшается. Хрусталик, роговицу и стекловидное тело называют оптической, или преломляющей, системой глаза. Преломляющая сила глаза человека зависит от состояния хрусталика, роговицы и стекловидного тела. Для получения четкого изображения очень важна способность оптической системы человека фокусировать лучи света на самой внутренней оболочке глаза сетчатке.

Сетчатка глаза имеет очень сложное строение. В ней находится 10 слоев клеток. Особенно важны клетки под названием колбочки и палочки. Палочки отвечают за восприятие света, а колбочки за цветовое восприятие. Самое важное место сетчатки это область наилучшего восприятия зрительных ощущений.Колбочки обеспечивают дневное и цветное зрение. Палочки ночное и сумеречное. Заболевание под названием "куриная слепота" как раз и вызвано нарушением нормальной деятельности палочек. Давайте вспомним, что же это за заболевание с таким оригинальным названием. Человек прекрасно видит днем и при ярком электрическом свете, но к вечеру, с наступлением сумерек, зрение ухудшается, а в темноте человек не видит совсем. Это все из-за палочек.

Глаз человека устроен очень сложно и нуждается в защите от внешних воздействий. Природа и здесь все предусмотрела, снабдив органы зрения такими необходимыми защитниками, как веки и слезная жидкость. Веки защищают глазное яблоко от непрерывного воздействия света и попадания инородных тел. При моргании происходит равномерное распределение слезной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания. Слезная жидкость вырабатывается специальными слезными железами. В ней содержатся вещества, убивающие микробы. Слезы увлажняют роговицу, способствуют сохранению ее прозрачности, смывают с поверхности глаза соринки, пыль и прочие инородные тела.

Чтобы разобраться, каким образом мы видим , попробуем сравнить глаз с устройством фотоаппарата. Для получения изображения близких и далеких предметов на пленке фотоаппарат приходится наводить на фокус, перемещая объектив вперед или назад. В человеческом глазу происходит похожее явление. Мышцы глаза помогают хрусталику фокусировать изображение на сетчатке, немного сжимая и растягивая глазное яблоко.

Как вы уже смогли убедиться, строение глаза человека представляет собой сложную оптическую систему. Лучи света, попадая в глаз, преломляются и, собираясь в фокусе этой системы, дают изображение тех предметов, от которых они исходят.

Также существуют и нарушения зрения. Если лучи света преломляются слишком сильно, фокусируясь впереди сетчатки, то в таком случае у человека определяют близорукость . При дальнозоркости лучи фокусируются позади сетчатки. Как в первом, так и во втором случае изображение предметов получается нечетким, размытым.

Подробно мы поговорим об этом в следующих статьях, посвященных близорукости и дальнозоркости, там же мы поговорим и о том, что такое очки и зачем они нужны. А сейчас вы можете почитать о народных средствах при ослаблении зрения

В верхней части орбиты находятся слезный, фронтальный и трохлеарный нервы и верхняя глазничная вена. В нижней части проходят верхняя и нижняя ветви глазодвигательного нерва, отводящий нерв, назоцилиарные и симпатические волокна.

Орбита глаза является полостью грушевидной формы, выход из которой представлен каналом зрительного нерва. Его интраорбитальная порция длиннее (25 мм), чем расстояние от заднего полюса глаза до канала зрительного нерва (18 мм). Это позволяет глазу смещаться кпереди на значительное расстояние (экзофтальм) без чрезмерного натяжения зрительного нерва.

  1. Свод орбиты состоит из двух костей: малого крыла основной кости и орбитальной пластинки лобной кости. Свод прилежит к передней черепной ямке и лобной пазухе. Дефект в орбитальном своде может приводить к пульсирующему экзофтальму в результате передачи колебаний цереброспинальной жидкости на орбиту.
  2. Наружная стенка орбиты также состоит из двух костей: скуловой и большого крыла основной. Передняя часть глаза выступает за наружный край орбиты и подвержена риску травматического повреждения.
  3. Нижняя стенка орбиты состоит из трех костей: скуловой, верхнечелюстной и небной. Заднемеднальная часть верхнечелюстной кости относительно слабая и может подвергаться разрывному перелому. Нижняя стенка орбиты формирует свод верхнечелюстной пазухи, поэтому карцинома, прорастающая в орбиту из верхнечелюстной пазухи, может смещать глаз кверху.
  4. Внутренняя стенка орбиты состоит из четырех костей: верхнечелюстной, слезной, решетчатой и основной. Папирусная пластинка, формирующая часть медиальной стенки, имеет толщину листа бумаги и перфорирована множеством отверстий для нервов и кровеносных сосудов, поэтому целлюлит орбиты часто развивается вторично вследствие синусита решетчатой пазухи.
  5. Верхняя орбитальная щель - узкий промежуток между большим и малым крыльями основной кости, по которому проходят важные структуры из полости черепа в орбиту.

Воспаление в области верхнеорбитальной щели и вершины орбиты проявляется разнообразной симптоматикой, включая офтальмоплегию и нарушение венозного оттока, что обусловливает развитие отека век и экзофтальм.

Поражение мягких тканей

Признаки: изменения со стороны века, периорбитальный отек, птоз, хемоз и конъюнктивальная инъекция.

Причины: тиреоидная болезнь глаза, целлюлит орбиты, воспаление орбиты и артериовенозные соустья.

Ilive.com.ua

Рассмотрим, что собой представляют переломы стенок орбиты. Глазница (орбита) – костная полость, содержащая орган зрения, состоящий из глазного яблока и его вспомогательного аппарата. Она имеет форму четырехгранной пирамиды глубиной около 5 см с вершиной, направленной назад и внутрь. Верхняя стенка орбиты образована лобной костью спереди и малым крылом клиновидной кости сзади; наружная стенка – скуловой и лобной костями, а также большим крылом основной кости; внутренняя стенка – слезной костью, телом клиновидной кости и глазничной пластинкой решетчатой кости; нижняя стенка – верхней челюстью, скуловой костью и глазничным отростком нёбной кости. Глазница граничит с передней черепной ямкой и придаточными пазухами носа: лобной, решетчатой и верхнечелюстной (гайморовой).

В области вершины глазницы, в малом крыле клиновидной кости, находится зрительное отверстие, через которое проходят зрительный нерв и глазничная артерия. Глазодвигательный, глазной, блоковый и отводящий нервы, а также верхняя глазничная вена попадают в полость орбиты через верхнюю глазничную щель. Через нижнеглазничную щель проходит подглазничный нерв, и вены глазницы анастомозируют с венозным крыловидным сплетением.

Наиболее часто встречаются повреждения нижней стенки глазницы в связи с переломом скуловой кости, рассмотренные выше.

Переломы стенок орбиты. При переломах верхней стенки орбиты возникают нарушения чувствительности в зоне иннервации верхнеглазничного нерва. Глазное яблоко смещается вниз. При ушибе или повреждении мышцы, поднимающей верхнее веко, возникает птоз века. В случае возникновения ретробульбарной гематомы отмечается экзофтальм. При повреждении верхней орбитальной щели или зрительного канала развивается синдром верхней глазничной щели, выражающийся в птозе века, смещении вперед глазного яблока, в параличе III, IV и VI черепно-мозговых нервов и нарушении чувствительности в области I ветви тройничного нерва, в снижении зрения сразу после травмы и расширении зрачка. Сочетание этого синдрома с потерей зрения свидетельствует о повреждении задних отделов орбиты. При вдавленных переломах передней стенки лобной пазухи может возникать асимметрия в центральной части лобной

Строение костных стенок глазницы области, которая зачастую выявляется после уменьшения отека.

Повреждения внутренней стенки орбиты и назоэтмоидальные переломы сопровождаются нарушением места прикрепления медиальной связки угла глаза, повреждаются слезные канальцы, возможна эктопия слезного мешка.

Переломы латеральной стенки орбиты вместе с передней частью большого крыла клиновидной кости могут приводить к смещению вниз латерального кантуса и возникновению эктропиона нижнего века.

В отдельную группу можно выделить так называемые «взрывные» переломы, когда в результате удара по глазному яблоку резко возрастает давление внутри глазницы, что приводит к перелому или разрушению тонкого дна и внутренней стенки глазницы. Само глазное яблоко при этом может остаться неповрежденным.

Схема повреждения дна орбиты при «взрывных» переломах

На рентгеновских снимках скуловая, лобная, а также глазничный край верхней челюсти создают впечатление целостности орбиты. Именно эти рентгенологически трудно диагностируемые переломы сопровождаются энофтальмом, вызывают тяжелые функциональные нарушения органа зрения и требуют своевременного хирургического лечения.

КТ в коронарной проекции пациента М. дна орбиты справа

Обширные травмы средней зоны лица сопровождаются переломами передней черепной ямки, ликвореей, повреждениями твердой мозговой оболочки и мозга. Челюстно-лицевые ранения сочетаются с повреждением глаз и их вспомогательных органов у 5,8 – 17,6% пострадавших.


www.medmoon.ru

Субконъюнктивальное кровоизлияние – это кровоизлияние под конъюнктиву (тонкую, прозрачную оболочку глаза, богатую мелкими и хрупкими кровеносными сосудами). Когда кровеносный сосуд лопается, кровь изливается в пространство между конъюнктивой глаза и склерой (белой, плотной оболочкой глазного яблока).

Причины

У лиц пожилого возраста субконъюнктивальные кровоизлияния могут происходить спонтанно, без видимых провоцирующих факторов, из-за хрупкости сосудистой стенки на фоне атеросклеротических изменений и гипертонической болезни, а также при сахарном диабете или патологии крови и ее свертывающей системы.

Кровоизлияние может произойти в результате резкого повышения венозного давления (после приступа кашля, смеха, рвоты, при физическом перенапряжении, связанном с подъемом тяжестей, наклонами или резким повышением артериального давления). Кровоизлияние под конъюнктиву часто отмечается при травмах глазного яблока и собственно конъюнктивы, а также в послеоперационном периоде при выполнении офтальмологических операции. В редких случаях субконъюнктивальные кровоизлияния появляются на фоне приема антикоагулянтов – препаратов, которые разжижают кровь (к ним относятся аспирин, варфарин и др.).

Симптомы

Большинство пациентов замечают субконъюнктивальное кровоизлияние самостоятельно, при взгляде в зеркало. Или необычный вид глаза отмечают окружающие.

Субконъюнктивальное кровоизлияние носит сливной характер и тем самым отличается от других видов покраснения глаз. Несмотря на устрашающий вид, данное кровоизлияние не представляет опасности для глаза и не влияет на зрение.

Лечение

По степени выраженности кровоизлияния под конъюнктиву очень разнообразны. Самые небольшие из них исчезают быстро, в течение нескольких дней, и не оказывают заметного влияния на течение восстановительного периода. Более обширные плоские кровоизлияния, занимающие половину поверхности глазного яблока или большую ее часть, рассасываются в течение 2- 3 недель. После массивных субконъюнктивальных кровоизлияний в течение нескольких месяцев сохраняется серовато-желтушная окрашенность склеры.

Субконъюнктивальное кровоизлияние, в большинстве случаев, это самоограничивающееся состояние, которое не требует специального лечения при отсутствии сопутствующей инфекции или существенной травмы. Однако лечение может потребовать причина, давшая такое кровоизлияние. Кровоизлияние под конъюнктиву в сочетании с кровоточивостью, легким появлением синяков и жалобами на общее состояние может быть признаком серьезного общего заболевания, связанного с патологией крови или сосудов. Поэтому, при обнаружении кровоизлияния, особенно в случае рецидивов, следует обратиться к врачу.

По материалам:http://www.heople.com

Причинами кровоизлияний являются повреждения, операции, общие и местные болезни. Очень небольшие травмы, как, например, травма, вызванная углом подушки, растирание глаза, инородное тело, попавшее в глаз, могут вызвать распространенные, прямо пугающие кровоизлияния без того, чтобы больной заметил их возникновение. Часто больной замечает их только на основании сообщений других лиц или случайно, смотря в зеркало. Иногда причину частых кровоизлияний под конъюнктиву глазного яблока не удается установить ни тщательным офтальмологическим, ни терапевтическим исследованием.

Общие болезни, сопровождающиеся геморрагическим диатезом, могут вызвать и кровоизлияния под конъюнктиву.

Кровоизлияние вначале тёмнокрасное, затем оно светлеет, становится желтым и через несколько дней рассасывается.
Часты значительные подконъюнктивальные кровоизлияния при коклюше и в случаях склероза сосудов конъюнктивы.
Тупые и проникающие повреждения глаза обычно сопровождаются кровоизлияниями под конъюнктиву. При всех субконъюнктивальных кровоизлияниях пингвекулы не покрываются ими. Родовые травмы также могут вызвать распространенные кровоизлияния.

Точечные кровоизлияния обычно наблюдаются при болезнях конъюнктивы. Конъюнктивиты, вызванные бациллами Кох-Уикса и инфлюэнцы, а в отдельных случаях конъюнктивиты, вызываемые пневмококком, а также вирусами, могут сопровождаться точечными кровоизлияниями. Это небольшие кровоизлияния в виде небольших, неправильной формы красных пятнышек. Иногда они малозаметны и невидны из-за гиперемии конъюнктивы.

На рисунке показано характерное субконюнктивальное кровоизлияние.

Лечение субконъюнктивального кровоизлияния в глаз

Как правило, субконъюнктивальное кровоизлияние в глаз не опасно.
В основном требуется лечение основного заболевания приведшего к субконъюнктивальному кровоизлиянию в глаз.

Для ускорения рассасывания кровоизлияния используют кали йодистого калия (калия йодид) 2% или 3%. Эти капли обладают хорошим рассасывающим эффектом и применяются также при кровоизлияниях внутрь глаза.

Важна общеукрепляющая и витоминотерапия. Особенно полезна будет аскорбиновая кислота и витамин P. Препарат аскарутин содержит оба этих витамина, которые укрепляют сосудистую стенку.

Глаза позволяют нам видеть мир таким, какой он есть. С медицинской точки зрения, глаза являются выростами мозга, они очень похожи на видеокамеры, функции и устройство у них идентичные. Закладка зрительной системы у человеческого эмбриона начинается на 18 день, а с 7 месяцев плод уже может видеть.

К 18 годам зрительный анализатор человека при нормальном развитии должен напоминать хорошо настроенный фотоаппарат , формирование зрительной системы завершается. Глаз взрослого человека весит 6-8 грамм и представляет собой сложнейший оптический прибор. Попробуем разобраться в строении органа зрения.

Органы зрения человека

Зрение человека является функцией зрительного анализатора, который представляет собой сложную зрительную систему, включающую в себя:

  • глазное яблоко;
  • защитные и вспомогательные органы глаза;
  • проводящие пути;
  • подкорковые и корковые центры.

Только при согласованной и чёткой работе всех компонентов возникают зрительные ощущения, и человек различает яркость, цвет, формы, размеры наблюдаемых объектов.

Как это происходит? Чтобы понять, как человек видит, надо ознакомиться со структурой глаза .

Строение и функции органа зрения

Основная задача глаз – передача изображения зрительному нерву. Происходит это при помощи следующих глазных структур.

Роговица и водянистая влага

Наиболее важной частью глазного яблока является роговица – внешняя, прозрачная оболочка, покрывающая переднюю часть глаза. Это непросто покрывное «стёклышко», защищающее от внешних воздействий, это сильно преломляющая линза, которая влияет на фокус. Состоит она из клеток, хорошо пропускающих свет. На 1 квадратный миллиметр роговицы приходится не менее 2 тысяч таких клеток .

Роговица требует постоянного смачивания, в противном случае она пересыхает и на ней могут образовываться микротрещины. Глаз человека за минуту по норме должен моргать 6 раз, при работе с компьютером частота мигания уменьшается в 2 раза. Это ведёт к пересыханию роговицы, она мутнеет. Вот почему врачи рекомендуют на каждый час работы, требующей зрительного напряжения, делать 15-минутные перерывы. За это время глаз успевает расслабиться, снять спазм мышц и восстановить свои рефлексы. Помогает расслаблению гимнастика для глаз.

Влага

Роль смазки для роговицы выполняет слёзная жидкость. Слёзная плёнка очень тонка, размер её не более 10 микрон, между тем от неё зависит качество зрения. Средний широкий слой плёнки – водянистая влага, хорошо пропускает свет и способствует проникновению кислорода и других питательных веществ. Внутриглазная жидкость находится между роговицей и радужкой.

Радужка и зрачок

Радужка – передняя часть сосудистой оболочки глаза, содержит пигмент, который определяет цвет глаз у человека. В центре радужной оболочки находится отверстие, называемое зрачком. Диаметр его может меняться в зависимости от освещения. Регулируется он мышцами радужки, отвечающими за сужение и расширение зрачка.

С помощью зрачка регулируется избыток света, он защищает сетчатку от ослепления .

С радужкой граничит непрозрачная оболочка, называемая склерой, в народе наружная видимая её часть получила название белок глаза. Склера окружает глазное яблоко на 80%, в передней части она переходит в роговицу.

Хрусталик

Тело, расположенное за зрачком, называется хрусталиком. Он наряду с роговицей создаёт изображение, так как представляет собой двояковыпуклую линзу, состоящую из прозрачных упорядоченных волокон. При нормальном зрении размеры хрусталика: толщина от 3,5 мм до 5мм, диаметр – 9-10 мм.

Снаружи есть капсула, в которую вплетены тончайшие волокна, связанные с цилярным телом. За счёт оптической силы хрусталика глаз фокусирует изображение . Хрусталик меняет форму, что позволяет одинаково видеть вдали и вблизи. Напрягаясь, цилярная мышца расслабляет волокна хрусталика, и он принимает выпуклую форму, обеспечивая чёткое изображение вблизи. Когда человек смотрит вдаль, мышца расслабляется, волокна натягиваются, хрусталик становится более плотным.

С возрастом ядро хрусталика уплотняется, он становится менее эластичным, поэтому люди в возрасте 50 лет начинают испытывать проблемы со зрением вблизи. Учитывая современный ритм жизни и нагрузки на глаза, врачи прогнозируют наличие близорукости у 75% населения.

Когда хрусталик теряет свою прозрачность, начинается катаракта. Сегодня этот диагноз совсем нестрашен, так как операция по замене мутного хрусталика на искусственный длится от 5 до 7 минут . А грамотно подобранный искусственный хрусталик позволяет избавлять пациента не только от катаракты, но и компенсировать его возрастную близорукость.

Стекловидное тело

Сразу за хрусталиком до самой сетчатки находится стекловидное тело. Оно придаёт глазному яблоку ту форму, которую он имеет. Стекловидное тело состоит из вязкой гелеобразной субстанции, заключённой в каркас из фибрилл. В норме эти фибриллы расположены упорядочено и не препятствуют прохождению света до сетчатки. Но когда происходит взбалтывание фибрилл, и они теряют свою упорядоченность, то у человека возникает деструкция стекловидного тела. Выражается она в том, что пациент на светлом фоне начинает видеть проплывающие тонкие нити. Эта патология на зрение не влияет, но доставляет человеку некоторый дискомфорт.

Сетчатка

Попадая в глаз, свет сначала проходит через роговицу и хрусталик , потом через стекловидное тело доходит до внутренней поверхности глаза. Там находится слой светочувствительных клеток, на которых и проецируется изображение. Это клетки сетчатки, которых в глубине глазного яблока миллионы.

Сетчатка – самая высокоорганизованная ткань, играющая главную роль в строении и функциях органа зрения. Она состоит из 10 высокоорганизованных слоёв, структура её неоднородна. Здесь присутствуют клетки, называемые палочками и колбочками. Колбочки обеспечивают цветовое зрение, а палочки дают чёрно-белое восприятие. От здоровья сетчатки зависят функции зрительного анализатора в целом. Миллионы волокон сетчатки, сходясь в единую нить, образуют зрительный нерв , который мгновенно передаёт сигналы в мозг. Заканчивается зрительное восприятие в больших полушариях коры головного мозга.

Глазная аномалия возникает в том случае, если лучи света фокусируются не на сетчатке, а попадают впереди неё, тогда развивается близорукость, если позади сетчатки – то дальнозоркость. Для компенсации близорукости назначают двояковогнутые линзы, а для дальнозоркости – двояковыпуклые очки.

Прозрачные поверхности глаза, через которые проходит свет, определяют преломляющую силу глаза. Она выражается в диоптриях (D) и составляет для близких расстояний 70 D , а для удалённых объектов 59 D.

Все рассмотренные структуры органа зрения составляют оптическую и световоспринимающую систему. Осталось назвать функции вспомогательного аппарата глаза.

Вспомогательный аппарат глаза и его функции

Вспомогательный аппарат глаза осуществляет защитную и двигательную функцию .

К нему относятся:

Двигательный аппарат

При разглядывании какого-либо объекта глаза человека двигаются. Движение осуществляют шесть мышц, прикреплённых к глазному яблоку. Различают 4 прямые мышцы: верхнюю, нижнюю, латеральную и медиальную; и 2 косые: верхнюю и нижнюю.

Мышцы работают таким образом, что оба глаза выполняют движение одновременно и содружественно.

Выделяют 4 типа движения глаз .

  1. Саккадические движения, которые представляют собой быстрые скачки, длительностью в доли секунды, которые глаз не ощущает при прослеживании контура объекта.
  2. Плавные следящие движения за двигающимся изображением.
  3. При близком контакте с изображением происходит сведение зрительных осей друг с другом и возникает конвергирующее движение.
  4. Механизм, поддерживающий фиксацию взора во время движения головы, называется вестибулярным движением глаз.

Сокращения глазодвигательных мышц приводят глазное яблоко в сложное поворотное движение, координируя работу сразу двух глаз.

Веки

Веки состоят из двух половинок, каждая из которых представляет собой кожную складку, основу её составляет хрящ . Закрытые веки – это защитная перегородка передней части глаза. Верхнее и нижнее веко прикрывают глаз сверху и снизу. У век различают переднюю и заднюю часть и свободные края. Пространство между краями называется глазной щелью. Длина её у взрослого человека обычно колеблется в пределах 30 см, а ширина – от 10 до 14 мм.

Края образуют углы: медиальный и латеральный. Около медиального угла на обеих частях век наблюдается небольшое возвышение – слёзный сосочек с точечным отверстием. Это начало слёзного канальца. Передний край век покрыт ресницами, а внутренняя сторона века покрыта конъюнктивой. Конъюнктива – это слизистая оболочка, которую ещё называют соединительной оболочкой, так как она с века через конъюнктивный мешок переходит на глазное яблоко.

Веки имеют развитую лимфатическую систему и много сосудов, а кожа на веках нежная, легко собирается в складки, содержит потовые и сальные железы. Они не только предохраняют глаз от повреждения, но и служат щитом на пути яркого света.

Ресницы

Ресницы человека выполняют две функции: защитную и эстетическую. Густые длинные волоски на веках защищают глаз от попадания инородных тел, насекомых, пыли. Они же придают лицу человека симпатичное выражение, обрамляя глаз красивым ореолом. Длина волосков верхних ресниц может быть до 10 мм, нижние обычно короче – 7 мм. Густота ресниц – индивидуальный показатель, но по статистике верхнее веко содержит в 3,5 раза больше ресниц, чем нижнее. Срок жизни ресниц составляет около 150 дней, затем они меняются.

Брови

Над глазами существует дугообразное возвышение кожи, покрытое волосками. Это брови, которые призваны защищать глаз сверху от нежелательных воздействий. Брови имеют вид валиков и выполняют в жизни человека коммуникационную роль. Как мимическое средство они помогают выразить эмоции человека: удивление, гнев, испуг.

Слёзный аппарат

Трудно переоценить защитную функцию слёзного аппарата. Слеза омывает глазное яблоко и смачивает роговицу, предотвращая её пересыхание и переохлаждение . Слёзные железы, отводящие пути, слёзные канальцы, слёзный мешок, носослёзный проток – всё это те структуры, которые реализуют суточную потребность глаза в увлажняющей его жидкости. Эмоциональный всплеск приводит к активации главной слёзной железы, и тогда человек проливает слёзы.

Зрение человека – это сложный много звеньевой процесс, в котором участвует не только орган зрения, но и мозг. Не зря говорят: «Смотрит глазами, а видит мозгами».

Анатомия человека - сложнейший из вопросов, на которые люди тысячелетиями ищут ответы. Необходимость изучения человеческого тела очевидна – чем больше мы знаем о своем организме, тем проще нам поддерживать его здоровым или лечить в случае проблем.

Однако наше тело - это один из наиболее загадочных механизмов в природе.

С каждым годом учеными делаются все более и более невероятные открытия. Механизмы, которые обнаруживаются в теле человека поражают своей сложностью и точностью. Одним из таких сложнейших и уникальнейших механизмов является зрение. Внешнюю работу (восприятия изображения) выполняет глаз.

Для понимания того, как происходит процесс формирования «картинки» необходимо не только понимать строение глаза, но и осознавать, как обрабатывается получаемая извне информация в мозгах, и как вообще устроен процесс зрения.

Строение глаза человека

Тело человека — это очень сложная система взаимосвязанных элементов. Каждый орган выполняет огромное количество функций и имеет сложное строение. Только когда точный механизм под названием «организм» работает слажено, человек чувствует себя здоровым. Каждый, даже самый незначительный изъян несет в себе угрозу для всего тела. Каждый, даже самый маленький орган жизненно важен. Ничто в этой идеальной системе не лишнее.

Описание строения глаза

Глазное яблоко человека по форме своей похоже на шарик. Наружная плотная оболочка называется белковой. За белковой находится кровеносная. В ней располагаются сосуды, питающие глаз кровью. Снаружи белковая оболочка покрыта прозрачной «пленочкой» — роговицей. Кровеносная в передней части глаза переходит в радужную. От ее окраски зависит цвет глаз.

Черный кружочек который мы видим в передней части глаза – зрачок. Через него свет попадает в глаз. За ним располагается двояковыпуклый хрусталик. К сосудистой оболочке прилегает эпителий, окрашивающий ее в черный цвет. Внутренняя часть глаза называется сетчаткой. Полость глаза заполнена водянистым веществом – стекловидным телом (его структура напоминает гель).

Белковая оболочка

Это некий защитный слой глаза. Она предотвращает попадание посторонних микроорганизмов в глаз. Так же она защищает от химических повреждений. По схеме строения, роговица, наружная выпуклая часть оболочки – напоминает стекло в часах, покрывая наружную часть глаза. В ней нет кровеносных сосудов, она абсолютно прозрачна.

В ней сосредотачивается огромное количество нервных окончаний, поэтому она чувствительна к температуре и прикосновениям. Болевые ощущения, возникающие от пара, попадания реснички в глаз и т.д. – это реакция именно роговицы. Вообще, роговица имеет очень сложное строение.

Она состоит из пяти слоев:

Верхний слой роговицы легко восстанавливается, и проблемы связанные именно с этим слоем ткани очень редко встречаются. Он обеспечивает увлажнение глаза.

Передняя пограничная мембрана – достаточно плотный слой, значение которого до сих пор не определено.

Ученые не пришли к единому выводу, касательно функций этого слоя. Многие млекопитающие обходятся без него. Этот слой является наименее восстанавливаемым.

Кровеносная оболочка

Эта оболочка состоит из множества сосудов, отвечающих за питание глазного яблока. Внутренняя ее сторона окрашена черным пигментом. Это уникальный элемент в глазах человека. Говоря совсем просто, он отвечает за четкость изображения, которое мы видим. Свет, попадающий через зрачок создает четкую «картинку» . Свет попадающий через белковую и радужную оболочки был бы излишним и зрение стало бы размытым. Черный пигмент поглощает этот лишний свет, обеспечивая нормальное зрение.

Радужная оболочка

Передняя часть сосудистой оболочки (то, что мы видим, глядя в глаза) – это радужка. Как известно цвет глаз у всех людей разный, так вот обеспечивает эти различия пигмент меланин. Именно от его количества в радужке зависит цвет глаз.

В середине радужки – зрачок. Как уже было выше сказано, он поглощает свет. Его диаметр зависит от освещения, таким образом в более темном помещении зрачок расширяется, что бы «пропустить» больше света на сетчатку глаза. При ярком освещении он сужается, поскольку избыток света навредил бы сетчатке глаза.

Расширение и сужение происходит за счет ресничной мышцы. Это так же составляющая часть кровеносной оболочки. Она состоит из нескольких систем мышечных клеток. Одна система – расширяет, другая – сужает. Человек даже не догадывается об этих микро движениях в глазах, однако от них зависит качество зрения.

Хрусталик

За зрачком располагается хрусталик. Основная его функция – преломление света. Так же он позволяет фокусировать взгляд на предметах разной удаленности. Хрусталик имеет двояковыпуклую форму. Его строение так же достаточно сложное. Вещество хрусталика помещено в капсулу.

Передняя часть капсулы изнутри покрыта слоем эпителия (задняя ее часть эпителия лишена). Крепится хрусталик тонкими нитями, к ресничному телу. Хрусталик лишен нервных окончаний и кровеносных сосудов. Благодаря этому стало возможно лечение различных проблем, связанных с хрусталиком, по средством операции. Делается пересадка и природный хрусталик заменяют искусственным. Помимо функций, непосредственно обеспечивающих зрение, хрусталик выступает природным барьером, не пуская стекловидное тело в переднюю часть глаза.

Сетчатая оболочка

Это, пожалуй, самая важная часть глазного яблока. Именно она обеспечивает нам зрение. Ее строение очень непростое. Самые различные клетки, реагируют на свет, благодаря этому различают предметы, их форму и цвет, посылают сигналы головному мозгу и мы, не подозревая о сложнейшем процессе, происходящем у нас в глазах видим окружающий мир.

Именно поэтому, люди не способны видеть в темноте. Сетчатка глаза реагирует на свет. Однако, существуют клетки, реагирующие на слабое освещение (палочки). Благодаря им, в очень слабоосвещенных местах мы различаем контуры предметов.

Строение и работа сетчатки очень сложные. Вообразить себе, что клетки должны преобразовать свет в нервный импульс, который отправится прямиком в мозг, уже трудно, а если задуматься с какой скоростью происходит этот процесс, зрение становится настоящим чудом.

Основные элементы сетчатки:

  • Зрительный нерв
  • Сосуды
  • Желтое пятно

Зрительный нерв – сложный и жизненно необходимый для зрения элемент. Он, как провод, который с одной стороны подсоединили к сетчатке, а с другой – к зрительному анализатору. Зрительный анализатор – отдел головного мозга, который беспрерывно «расшифровывает» импульсы, посылаемые клетками сетчатки, превращая их в привычные нам зрительные образы.

Нерв этот состоит из миллионов волокон. Каждое из них обеспечивает определенные участки изображения. Если хоть одно из этих волокон выйдет из строя, часть «картинки» выпадет. Если же центральный нерв полностью умрет, человек ослепнет безвозвратно.

Желтое пятно – место в котором сосредоточено наибольшее количество «колбочек». Это клетки, позволяющие видеть при свете. Выше упомянутые «палочки» располагаются вне желтого пятна, и чем дальше от желтого пятна, тем меньше «колбочек» и больше «палочек» .

Так же в глазах имеются две камеры с водянистой влагой. Они обеспечивают увлажнение и питание всех частей глазного яблока. Нарушение оттока влаги приводит к одному из наиболее распространенных заболеваний глаз – глаукоме. Из-за переизбытка влаги так же может подниматься глазное давление. Если происходит сильный перепад давления отмирает глазной нерв и человек безвозвратно слепнет.

Наличие у человека двух глаз позволяет нам видеть трехмерно и ориентироваться в пространстве. С разных «уголков» глаза поступают разные импульсы, которые в зрительном анализаторе «склеиваются» в единое изображение. Конечно, боковое зрение человека не идеально, и то, что мы видим «краем» глаза размыто, но это позволяет нам ориентироваться в пространстве.

Внешней частью глаза человека является веко. Это мышечное образование, снаружи покрытое эпителием, а изнутри – это слизистая. Веко очевидно выполняет защитные функции. Как только возникает угроза механического повреждения глазного яблока человек рефлекторно закрывает веки. Изнутри слизистая оболочка увлажняет глаз. По краю века располагаются ресницы, которые так же не позволяют микроэлементам оседать на слизистой глаза.

Так же, говоря о строении глаза, было бы неправильно не отметить слезные железы и каналы. Железа находится над внешним уголком глаза, а слезные каналы у внутреннего уголка. Благодаря слезной жидкости глаз увлажняется. Так же слезы играют важную роль в защите зрения. Когда в глаз попадает пыль или другой микроэлемент сразу же появляются слезы, которые смывают посторонние элементы со слизистой, тем самым очищая глаз и предотвращая повреждения.

Это неполное и не развернутое объяснение того, как устроено и как работает зрение человека. Как видно, это сложнейший многоуровневый процесс.

Сотни элементов связаны между собой и выполняют свои функции. Стоит одному из них нарушить цепочку и человек теряет зрение, а значит теряет визуальную связь с миром.

Зрение, как и любой другой процесс в организме изнашивается, а потому требует заботы и ухода. Следует внимательно относится к здоровью своих глаз, что бы с годами не потерять радость созерцания окружающей среды.

Зрительная система передаёт мозгу более 90% сенсорной информации. Зрение – многозвеньевой процесс, начинающийся с проекции изображения на сетчатке глаза, затем происходит возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы. Заканчивается зрительное восприятие формированием в затылочной доле коры больших полушарий зрительного образа.

Периферический отдел зрительного анализатора представлен органом зрения (глазом), который служит для восприятия световых раздражений и находится в глазнице. Орган зрения состоит из глазного яблока и вспомогательного аппарата (схема 12.1). Строение и функции органа зрения представлены в таблице 12.1.

Схема 12.1.

Строение органа зрения

Строение органа зрения

Вспомогательный аппарат

Глазное яблоко

  1. веки с ресницами,

    слёзные железы

    наружная (белочная) оболочка,

    средняя (сосудистая) оболочка,

    внутренняя (сетчатка) оболочка

Таблица 12.1.

Строение и функции глаза

Системы

Части глаза

Строение

Функции

Вспомогательные

Волосы, растущие от внутреннего к внешнему углу глаза на надбровной дуге

Отводят пот со лба

Кожные складки с ресницами

Защищают глаз от ветра, пыли, ярких солнечных лучей

Слёзный аппарат

Слёзные железы и слёзновыводящие пути

Слёзы увлажняют поверхность глаза, очищают, дезинфицируют (лизоцим) и согревают его

Оболочки

Белочная

Наружная плотная оболочка, состоящая из соединительной ткани

Защита глаза от механических и химических повреждений, а также микроорганизмов

Сосудистая

Средняя оболочка, пронизанная кровеносными сосудами. Внутренняя поверхность оболочки содержит слой чёрного пигмента

Питание глаза, пигмент поглощает световые лучи

Сетчатка

Внутренняя многослойная оболочка глаза, состоящая из фоторецепторов: палочек и колбочек. В задней части сетчатки выделяют слепое пятно (отсутствуют фоторецепторы) и желтое пятно (наибольшая концентрация фоторецепторов)

Восприятие света, преобразование его в нервные импульсы

Оптическая

Роговица

Прозрачная передняя часть белочной оболочки

Преломляет световые лучи

Водянистая влага

Прозрачная жидкость, находящаяся за роговицей

Пропускает лучи света

Передняя часть сосудистой оболочки с пигментом и мышцами

Пигмент придаёт цвет глазу (при отсутствии пигмента глаза красного цвета встречаются у альбиносов), мышцы изменяют величину зрачка

Отверстие в центре радужки

Расширяясь и сужаясь, регулирует количество поступающего света в глаз

Хрусталик

Двояковыпуклая эластичная прозрачная линза, окружённая ресничной мышцей (образование сосудистой оболочки)

Преломляет и фокусирует лучи. Обладает аккомодацией (способность изменять кривизну хрусталика)

Стекловидное тело

Прозрачное студенистое вещество

Заполняет глазное яблоко. Поддерживает внутриглазное давление. Пропускает лучи света

Световоспринимающая

Фоторецепторы

Расположены в сетчатке в форме палочек и колбочек

Палочки воспринимают форму (зрение при слабом освещении), колбочки – цвет (цветное зрение)

Проводниковый отдел зрительного анализатора начинается зрительным нервом, который направляется из глазницы в полость черепа. В полости черепа зрительные нервы образуют частичный перекрёст, причём, нервные волокна, идущие от наружных (височных) половинок сетчатки, не перекрещиваются, оставаясь на своей стороне, а волокна, идущие от внутренних (носовых) половин её, перекрещиваясь, переходят на другую сторону (рис. 12.2).


Рис . 12.2. Зрительные пути (А ) и корковые центры (Б ). А . Области перерезки зрительных путей обозначены строчными буквами, а возникающие после перерезки дефекты зрения показаны справа. ПП - перекрест зрительного нерва, ЛКТ - латеральное коленчатое тело, КШВ - коленчато–шпорные волокна. Б . Медиальная поверхность правого полушария с проекцией сетчатки в области шпорной борозды.

После перекрёста зрительные нервы называются зрительными трактами. Они направляются к среднему мозгу (к верхним буграм четверохолмия) и промежуточному мозгу (латеральные коленчатые тела). Отростки клеток этих отделов мозга в составе центрального зрительного пути направляются в затылочную область коры головного мозга, где расположен центральный отдел зрительного анализатора. В связи с неполным перекрёстом волокон к правому полушарию приходят импульсы от правых половин сетчаток обоих глаз, а к левому – от левых половин сетчаток.

Строение сетчатки. Самый наружный слой сетчатки образован пигментным эпителием. Пигмент этого слоя поглощает свет, вследствие чего зрительное восприятие становится более чётким, уменьшается отражение и рассеивание света. К пигментному слою прилежат фоторецепторные клетки . Из-за своей характерной формы они получили название палочек и колбочек.

Фоторецепторные клетки на сетчатке расположены неравномерно. Глаз человека содержит 6-7 млн. колбочек и 110-125 млн. палочек.

На сетчатке имеется участок размером 1,5 мм, который называют слепым пятном . Он совсем не содержит светочувствительных элементов и является местом выхода зрительного нерва. На 3-4 мм кнаружи от него находится желтое пятно , в центре которого расположено небольшое углубление – центральная ямка . В ней находятся только колбочки, а к периферии от неё число колбочек уменьшается и возрастает число палочек. На периферии сетчатки находятся только палочки.

За фоторецепторным слоем расположен слой биполярных клеток (рис. 12.3), а за ним – слой ганглиозных клеток , которые контактируют с биполярными. Отростки ганглиозных клеток образуют зрительный нерв, содержащий около 1 млн. волокон. Один биполярный нейрон контактирует со многими фоторецепторами, а одна ганглиозная клетка – со многими биполярными.

Рис. 12.3. Схема соединения рецепторных элементов сетчатки с сенсорными нейронами. 1 – фоторецепторные клетки; 2 –биполярные клетки;3 – ганглиозная клетка.

Отсюда, понятно, что импульсы от многих фоторецепторов сходятся к одной ганглиозной клетке, ибо число палочек и колбочек превышает 130 млн. Лишь в области центральной ямки каждая рецепторная клетка соединена с одной биполярной, а каждая биполярная – с одной ганглиозной, что создаёт наилучшее условия видения при попадании на неё световых лучей.

Различие функций палочек и колбочек и механизм фоторецепции. Целый ряд факторов свидетельствует о то, что палочки являются аппаратом сумеречного зрения, т. е. функционируют в сумерках, а колбочки – аппаратом дневного зрения. Колбочки воспринимают лучи в условиях яркой освещённости. С их деятельностью связано восприятие цвета. О различиях в функциях палочек и колбочек свидетельствует структура сетчатки разных животных. Так, сетчатка дневных животных – голубей, ящериц и др. – содержит преимущественно колбочки, а ночных (например, летучих мышей) – палочки.

Наиболее отчётливо воспринимается цвет при действии лучей на область центральной ямки, если же они попадают на периферию сетчатки, то возникает бесцветное изображение.

При действии лучей света на наружном сегменте палочек зрительный пигмент родопсин разлагается на ретиналь – производное витамина А и белок опсин . На свету после отделения опсина происходит превращение ретиналя напосредственно в витамин А, который из наружных сегментов перемещается в клетки пигментного слоя. Считают, что витамин А увеличивает проницаемость клеточных мембран.

В темноте происходит восстановление родопсина, для чего необходим витамин А. При его недостатке возникает нарушение видения в темноте, что называют куриной слепотой. В колбочках имеется светочувствительное вещество, сходное с родопсином, его называют йодопсином . Оно тоже состоит из ретиналя и белка опсина, но структура последнего неодинакова с белком родопсина.

Вследствие целого ряда химических реакций, которые протекают в фоторецепторах, в отростках ганглиозных клеток сетчатки возникает распространяющееся возбуждение, направляющееся в зрительные центры головного мозга.

Оптическая система глаза. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько прозрачных поверхностей – переднюю и заднюю поверхности роговицы, хрусталика и стекловидного тела. Разная кривизна и показатели преломления этих поверхностей определяют преломление световых лучей внутри глаза (рис. 12.4).


Рис. 12.4. Механизм аккомодации (по Гельмгольцу). 1 - склера; 2 - сосудистая оболочка; 3 - сетчатка; 4 - роговица; 5 - передняя камера; 6 - радужная оболочка; 7 - хрусталик; 8 - стекловидное тело; 9 - ресничная мышца, ресничные отростки и ресничный поясок (цинновы связки); 10 - центральная ямка; 11 - зрительный нерв.

Преломляющую силу любой оптической системы выражают в диоптриях (D). Одна диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза человека составляет 59 D при рассматривании далёких и 70,5 D при рассматривании близких предметов. На сетчатке получается изображение, резко уменьшенное, перевёрнутое вверх ногами и справа налево (рис. 12.5).


Рис. 12.5. Ход лучей от объекта и построение изображения на сетчатой оболочке глаза. АВ - предмет; ав - его избражение; 0 - узловая точка; Б - б - главная оптическая ось.

Аккомодация. Аккомодацией называют приспособление глаза к ясному видению предметов, расположенных на разном расстоянии от человека. Для ясного видения объекта необходимо, чтобы он был сфокусирован на сетчатке, т. е. чтобы лучи от всех точек его поверхности проецировалась на поверхность сетчатки (рис. 12.6).


Рис. 12.6. Ход лучей от близкой и далекой точек. Объяснение в тексте

Когда мы посмотрим на далёкие предметы (А), их изображение (а) сфокусировано на сетчатке и они видны ясно. Зато изображение (б) близких предметов (Б) при этом расплывчато, так как лучи от них собираются за сетчаткой. Главную роль в аккомодации играет хрусталик, изменяющий свою кривизну и, следовательно, преломляющую способность. При рассматривании близких предметов хрусталик делается более выпуклым (рис 12.4), благодаря чему лучи, расходящиеся от какой-либо точки объекта, сходятся на сетчатке.

Аккомодация происходит благодаря сокращению ресничных мышц, которые изменяют выпуклость хрусталика. Хрусталик заключён в тонкую прозрачную капсулу, которую всегда растягивают, т. е. уплощают, волокна ресничного пояска (циннова связка). Сокращение гладких мышечных клеток ресничного тела уменьшает тягу цинновых связок, что увеличивает выпуклость хрусталика в силу его эластичности. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. Введение в глаз атропина вызывает нарушение передачи возбуждения к этой мышце, ограничивает аккомодацию глаза при рассматривании близких предметов. Наоборот, парасимпатомиметические вещества – пилокарпин и эзерин – вызывают сокращение этой мышцы.

Наименьшее расстояние от предмета до глаза, на котором этот предмет ещё ясно видим, определяет положение ближней точки ясного видения , а наибольшее расстояние – дальней точки ясного видения . При расположении предмета в ближней точке аккомодация максимальна, в дальней – аккомодация отсутствует. Ближайшая точка ясного видения находится на расстоянии 10 см.

Старческая дальнозоркость. Хрусталик с возрастом теряет эластичность, и при изменении натяжения цинновых связок его кривизна меняется мало. Поэтому ближайшая точка ясного видения находится теперь не на расстоянии 10 см от глаза, а отодвигается от него. Близкие предметы при этом видны плохо. Это состояние называется старческой дальнозоркостью. Пожилые люди вынуждены пользоваться очками с двояковыпуклыми линзами.

Аномалии рефракции глаза. Преломляющие свойства нормального глаза называют рефракцией . Глаз без всяких нарушений рефракции соединяет параллельные лучи в фокусе на сетчатке. Если параллельно идущие лучи сходятся за сетчаткой, то тогда развивается дальнозоркость . В этом случае человек плохо видит близко расположенные предметы, а далеко расположенные – хорошо. Если же лучи сходятся перед сетчаткой, то тогда развивается близорукость , или миопия . При таком нарушении рефракции человек плохо видит далеко расположенные предметы, а близко расположенные – хорошо (рис. 12.7).


Рис. 12.7. Рефракция в нормальном (А), близоруким (Б) и дальнозорком (Г) глазу и оптическая коррекция близорукости (В) и дальнозоркости (Д) схема

Причина близорукости и дальнозоркости заключена в нестандартной величине глазного яблока (при близорукости оно вытянутое, а при дальнозоркости оно приплюснутое короткое) и в необычной преломляющей силе. При близорукости необходимы очки с вогнутыми стёклами, которые рассеивают лучи; при дальнозоркости – с двояковыпуклыми, которые собирают лучи.

К аномалиям рефракции относится также астигматизм , т. е. неодинаковое преломление лучей в разных направлениях (например, по горизонтальному и вертикальному меридиану). Этот недостаток в очень слабой степени присущ всякому глазу. Если посмотреть на рисунок 12.8, где одинаковые по толщине линии расположены горизонтально и вертикально, то одни из них кажутся более тонкими, другие – более толстыми.

Рис. 12.8. Чертеж для выявления астигматизма

Астигматизм обусловлен не строго сферической поверхностью роговой оболочки. При астигматизме сильных степеней эта поверхность может приближаться к цилиндрической, что исправляется цилиндрическими линзами, компенсирующими недостатки роговицы.

Зрачок и зрачковый рефлекс. Зрачком называют отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок способствует чёткости изображения на сетчатке, пропуская только центральные лучи и устраняя так называемую сферическую аберрацию. Сферическая аберрация состоит в том, что лучи, попавшие на периферические части хрусталика, преломляются сильнее центральных лучей. Поэтому, если не устранить периферических лучей, на сетчатке должны получиться круги светорассеяния.

Мускулатура радужной оболочки способна изменять величину зрачка и тем самым регулировать поток света, поступающего в глаз. Изменение диаметра зрачка изменяет световой поток в 17 раз. Реакция зрачка на изменение освещённости носит адаптивный характер, так как несколько стабилизирует уровень освещённости сетчатки. Если прикрыть глаз от света, а затем открыть его, то расширившийся при затмении зрачок быстро суживается. Это сужение происходит рефлекторно («зрачковый рефлекс»).

В радужной оболочке имеется два вида мышечных волокон, окружающих зрачок: кольцевые, иннервируемые парасимпатическими волокнами глазодвигательного нерва, другие – радиальные, иннервируемые симпатическими нервами. Сокращение первых вызывает сужение, сокращение вторых – расширение зрачка. Соответственно этому, ацетилхолин и эзерин вызывают сужение, а адреналин – расширение зрачка. Зрачки расширяются во время боли, при гипоксии, а также при эмоциях, усиливающих возбуждение симпатической системы (страх, ярость). Расширение зрачков – важный симптом ряда патологических состояний, например болевого шока, гипоксии. Поэтому расширение зрачков при глубоком наркозе указывает на наступающую гипоксию и является признаком опасного для жизни состояния.

У здоровых людей размеры зрачков обоих глаз одинаковые. При освещении одного глаза зрачок другого тоже суживается; такая реакция называется содружественной. В некоторых патологических случаях размеры зрачков обоих глаз различны (анизокория). Это может происходить вследствие поражения симпатического нерва с одной стороны.

Зрительная адаптация. При переходе от темноты к свету наступает временное ослепление, а затем чувствительность глаза постепенно снижается. Это приспособление зрительной сенсорной системы к условиям яркой освещённости называется световой адаптацией . Обратное явление (темновая адаптация ) наблюдается при переходе из светлого помещения в почти неосвещённое. В первое время человек почти ничего не видит из-за пониженной возбудимости фоторецепторов и зрительных нейронов. Постепенно начинают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.

Повышение световой чувствительности во время пребывания в темноте происходит неравномерно: в первые 10 минут она увеличивается в десятки раз, а затем в течение часа – в десятки тысяч раз. Важную роль в этом процессе играет восстановление зрительных пигментов. Пигменты колбочек в темноте восстанавливаются быстрее родопсина палочек, поэтому в первые минуты пребывания в темноте адаптация обусловлена процессами в колбочках. Этот первый период адаптации не приводит к большим изменениям чувствительности глаза, так как абсолютная чувствительность колбочкового аппарата невелика.

Следующий период адаптации обусловлен восстановлением родопсина палочек. Этот период завершается только к концу первого часа пребывания в темноте. Восстановление родопсина сопровождается резким (в 100000 – 200000 раз) повышением чувствительности палочек к свету. В связи с максимальной чувствительностью в темноте только палочек, слабо освещённый предмет виден лишь периферическим зрением.

Теории цветоощущения. Существует ряд теорий цветоощущения; наибольшим признанием пользуется трёхкомпонентная теория. Она утверждает существование в сетчатке трёх разных типов цветовоспринимающих фоторецепторов – колбочек.

О существовании трёхкомпонентного механизма восприятия цветов говорил ещё В.М. Ломоносов. В дальнейшем эта теория была сформулирована в 1801 г. Т. Юнгом, а затем развита Г. Гельмгольцем. Согласно этой теории, в колбочках находятся различные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие – к зелёному, третьи – к фиолетовому. Всякий цвет оказывает действие на все три цветоощущающих элемента, но в разной степени. Эта теория прямо подтверждена в опытах, где микроспектрофотометром измеряли поглощение излучений с разной длиной волны у одиночных колбочек сетчатки человека.

Согласно другой теории, предложенной Э. Герингом, в колбочках есть вещества, чувствительные к бело-черному, красно-зелёному и желто-синему излучениям. В опытах, где микроэлектродом отводили импульсы ганглиозных клеток сетчатки животных при освещении монохроматическим светом, обнаружили, что разряды большинства нейронов (доминаторов) возникают при действии любого цвета. В других ганглиозных клетках (модуляторах) импульсы возникают при освещении только одним цветом. Выявлено 7 типов модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм).

В сетчатке и зрительных центрах найдено много так называемых цветооппонентных нейронов. Действие на глаз излучений в какой-то части спектра их возбуждает, а в других частях спектра – тормозит. Считают, что такие нейроны наиболее эффективно кодируют информацию о цвете.

Цветовая слепота. Частичная цветовая слепота была описана в конце XVIII в. Д. Дальтоном, который сам ею страдал (поэтому аномалию цветовосприятия назвали дальтонизмом). Дальтонизм встречается у 8% мужчин и намного реже у женщин: возникновение его связывают с отсутствием определённых генов в половой непарной у мужчин Х-хромосоме. Для диагностики дальтонизма, важной при профессиональном отборе, используют полихроматические таблицы. Люди, страдающие этим заболеванием, не могут быть полноценными водителями транспорта, так как они не могут различать цвет огней светофоров и дорожных знаков. Существует три разновидности частичной цветовой слепоты: протанопия, дейтеранопия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трех основных цветов.

Люди, страдающие протанопией («краснослепые») не воспринимают красного цвета, сине-голубые лучи кажутся им бесцветными. Люди, страдающие дейтеранопией («зеленослепые») не отличают зелёные цвета от темно-красных и голубых. При тританопии – редко встречающейся аномалии цветового зрения, не воспринимаются лучи синего и фиолетового цвета.

Все перечисленные виды частичной световой слепоты хорошо объясняются трехкомпонентной теорией цветоощущения. Каждый вид этой слепоты – результат отсутствия одного из трёх колбочковых цветовоспринимающих веществ. Встречается и полная цветовая слепота – ахромазия , при которой в результате поражения колбочкового аппарата сетчатки человек видит все предметы лишь в разных оттенках серого.

Роль движения глаз для зрения. При рассматривании любых предметов глаза двигаются. Глазные движения осуществляют 6 мышц, прикреплённых к глазному яблоку. Движения двух глаз совершаются одновременно и содружественно. Рассматривая близкие предметы, необходимо сводить, а рассматривая далёкие предметы – разводить зрительные оси двух глаз. Важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной информации необходимо движение изображения на сетчатке. Импульсы в зрительном нерве возникают в момент включения и выключения светового изображения. При длящемся действии света на одни и те же фоторецепторы импульсация в волокнах зрительного нерва быстро прекращается и зрительное ощущение при неподвижных глазах и объектах исчезает через 1-2 с. Чтобы этого не случилось, глаз при рассматривании любого предмета производит не ощущаемые человеком непрерывные скачки. Вследствие каждого скачка изображение на сетчатке смещается с одних фоторецепторов на новые, вновь вызывая импульсацию ганглиозных клеток. Продолжительность каждого скачка равна сотым долям секунды, а амплитуда его не превышает 20º. Чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Они как бы прослеживают контуры изображения, задерживаясь на наиболее информативных его участках (например, в лице – это глаза). Кроме того, глаз непрерывно мелко дрожит и дрейфует (медленно смещается с точки фиксации взора) – саккады. Эти движения также играют роль в дезадаптации зрительных нейронов.

Типы движений глаз. Имеется 4 типа движений глаз.

    Саккады – неощущаемые быстрые скачки (в сотые доли секунды) глаза, прослеживающие контуры изображения. Саккадические движения способствуют удержанию изображения на сетчатке, что достигается периодическим смещением изображения по сетчатке, приводящим к активации новых фоторецепторов и новых ганглиозных клеток.

    Плавные следящие движения глаза за движущимся объектом.

    Конвергирующие движения – сведение зрительных осей навстречу друг другу при рассматривании объекта вблизи от наблюдателя. Каждый тип движений контролируется нервным аппаратом раздельно, но в конечном итоге все слияния заканчиваются на мотонейронах, иннервирующих наружные мышцы глаза.

    Вестибулярные движения глаза – регулирующий механизм, появляющийся при возбуждении рецепторов полукружных каналов и поддерживающий фиксацию взора во время движений головы.

Бинокулярное зрение. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках. Изображения всех предметов попадают на так называемые корреспондирующие, или соответственные, участки двух сетчаток и в восприятии человека эти два изображения сливаются в одно. Надавите слегка на один глаз сбоку: немедленно начнёт двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, конвергируя глаза, то изображение какой-либо более отдалённой точки попадает на неидентичные (диспаратные) точки двух сетчаток (рис. 12.9). Диспарация играет большую роль в оценке расстояния, и, следовательно, в видении глубины рельефа. Человек способен заметить изменение глубины, создающее сдвиг изображения на сетчатках на несколько угловых секунд. Бинокулярное слитие или объединение сигналов от двух сетчаток в единый зрительный образ происходит в первичной зрительной коре. Зрение двумя глазами значительно облегчает восприятие пространства и глубины расположения предмета, способствует определению его формы и объёма.


Рис. 12.9. Ход лучей при бинокулярном зрении. А – фиксирование взором ближайшего предмета; Б – фиксирование взором дальнего предмета; 1 , 4 – идентичные точки сетчатки; 2 , 3 – неидентичные (диспаратные) точки.